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Abstract. As a result of technological advances in monitoring atmosphere, hydrosphere, cryosphere and biosphere, as well 

as in data management and processing, several data bases have become freely available. These can be exploited in revisiting 

the global hydrological cycle with the aim, on the one hand, to better quantify it and, on the other hand, to test the 

established climatological hypotheses, according to which the hydrological cycle should be intensifying because of global 

warming. By processing the information from gridded ground observations, satellite data and reanalyses, it turns out that the 10 

established hypotheses are not confirmed. Instead of monotonic trends, there appear fluctuations from intensification to 

deintensification and vice versa, with deintensification prevailing in the 21st century. The water balance on land and sea 

appears to be lower than the standard figures of literature, but with greater variability on climatic time scales, which is in 

accordance with Hurst-Kolmogorov stochastic dynamics. The most obvious anthropogenic signal in the hydrological cycle 

appears to be the overexploitation of groundwater, which has a visible effect on sea level rise. Melting of glaciers has an 15 

equal effect, but in this case it in not known which part is anthropogenic, as studies on polar regions attribute mass loss 

mostly to ice dynamics.  

 

«Πεπαιδευμένου γάρ ἐστιν ἐπὶ τοσοῦτον τἀκριβὲς ἐπιζητεῖν καθ᾽ ἕκαστον γένος, ἐφ᾽ ὅσον ἡ τοῦ πράγματος φύσις ἐπιδέχεται»  

(“It is the mark of an educated man to look for precision in each class of things just so far as the nature of the subject admits”) 20 

Aristotle, Nicomachean Ethics, 1094b. 

1 Introduction 

If the dark side of concerns about earth’s climate is scare, the bright side is data. The latter single-word label means to 

include the technological advances in monitoring atmosphere, hydrosphere, cryosphere and biosphere, the gathering and 

processing of huge amounts of ground- and space-based observations for the land and sea parts of the earth, and the free 25 

availability of data. Hydrological processes on the global scale extend over all these spheres and our knowledge of them is 

benefited from these data.  

The availability of different types of data (detailed in section 2) allows revisiting the global hydrological cycle and 

improving its own quantified knowledge. It can also be useful in testing the climatological hypotheses that are relevant to 

hydrology. Among them, crucial is the hypothesis that, in a warming climate, atmospheric moisture is changing in a manner 30 
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that the relative humidity remains constant, but specific humidity increases according to the Clausius–Clapeyron 

relationship. As a result, the established view is that the global atmospheric water vapour should increase by about 6%–7% 

per °C of warming. This gives rise to what has been called intensification of hydrological cycle. Because of the alleged 

intensification, the role of hydrology becomes thus important in the climate agenda from a sociological point of view: some 

of the most prominent predicted catastrophes are related to water shortage and extreme floods, while, without involving 35 

extreme floods and droughts, future climate threats may not be frightening enough (Koutsoyiannis, 2014a).  

 Hence, in revisiting the hydrological cycle in an era of climate change concerns, the study of atmospheric water 

elevates in significance and, thus, section 3 is devoted to this. Precipitation and evaporation are the key components of the 

hydrological cycle whose imbalance in the land part of earth drives all other hydrological processes. Changes in the drivers 

are examined in section 4 before we study water balance per se in section 5. As alleged intensification of hydrological cycle 40 

is often related to extremes, we devote section 6 to precipitation extremes. Sections 7 and 8 are related to deterministic and 

stochastic approaches, respectively, on future climatic variation. In the former case we examine whether climate models are 

consistent with the reality, as assessed in the earlier sections, so as to be usable for future hydrological projections. In the 

latter case we summarize an approach alternative to deterministic modelling. Finally, in section 9 we summarize the 

conclusions of the study. 45 

2 Data sets and processing 

2.1 Sources of information  

This study tries to use a wide range of available data sets reflecting the real world hydrological cycle at the global level, 

either directly (by accessing the data per se) or indirectly (by using processed data and results from other studies). In 

particular, the information used comprises: (a) gridded ground observations, (b) satellite data and (c) reanalysis data. 50 

Gridded ground observations are available for precipitation over land. Gridded satellite data exist for several variables of 

hydrologic importance including air temperature, water vapour amount, cloud water amount, precipitation and snow cover, 

as detailed in the next subsections. Information from reanalyses is far richer, as these provide numerical description of the 

weather system in terms of a great deal of atmospheric variables by combining numerical weather prediction models with 

observations. Here we use NCEP-NCAR and ERA5 reanalyses, which are publicly available.  55 

 The NCEP-NCAR Reanalysis 1 (Kalnay et al., 1996) is jointly produced by the National Center for Environmental 

Prediction (NCEP) and the National Center for Atmospheric Research (NCAR). Its temporal coverage includes 4-times 

daily, daily and monthly values for 1948 to present at a horizontal resolution of 1.88° (~ 210 km). It uses a state-of-the-art 

analysis/forecast system to perform data assimilation using observations and a numerical weather prediction model. The data 

assimilation and the model used are identical to the global system implemented operationally at NCEP except in the 60 

horizontal resolution. A large subset of these data is available as daily and monthly averages.  
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The ERA5 (Copernicus Climate Change Service, 2017) is the fifth generation atmospheric reanalysis of the European 

Centre for Medium-Range Weather Forecasts (ECMWF), where the name ERA refers to ECMWF ReAnalysis. It spans the 

modern observing period from 1979 onward, with daily updates continuing forward in time, with fields available at a 

horizontal resolution of 31 km on 139 levels, from the surface up to 0.01 hPa (around 80 km). It has been produced as an 65 

operational service and its fields compare well with the ECMWF operational analyses (Hersbach and Dee, 2016). 

We did not use the longer-term reanalyses that appeared recently to serve climatic related studies as these have lower 

reliability. Specifically, the ERA-20C reanalysis which covers the period 1900-2010, compares poorly even to the ERA5 

reanalysis, developed by the same institution (ECMWF), while the 20CR V3 reanalysis (the Twentieth Century Reanalysis 

V3 by NOAA-CIRES-DOE), which covers the period 1836-2015 has, in addition, huge departures in the precipitation and 70 

evaporation quantities over the globe, with the global imbalance being more than half of the precipitation over land or almost 

twice the runoff. Therefore here they are judged as not hydrologically useful.  

In addition, this study uses results from several other studies which are based on different data sets, such as GRACE 

(Gravity Recovery and Climate Experiment; Syed et al., 2009; Eicker et al., 2016; Schellekens et al., 2017); LDAS (NASA's 

Global Land Data Assimilation System; Zhou et al., 2019), and hydrological models such as GRUN (global gridded monthly 75 

reconstruction of runoff, 1902 – 2014; Ghiggi et al., 2019) or PCR‐GLOBWB (Wada et al., 2010), which stands for PC 

Raster Global Water Balance. 

In the next subsections we describe each data set used while in Table 1 we summarize all details and provide all 

necessary links to the retrieved information, so that the user can easily reproduce the results of this study. In general, we use 

actual values of time series, disfavouring the popular notion of “anomalies”, i.e. for differences from a certain mean
*
, which 80 

have only a statistical, rather than a physical, meaning, while, even in a statistical context, they have several disadvantages 

(e.g. they hide biases).  

2.2 Temperature and dew point data 

The satellite temperature dataset, developed at the University of Alabama in Huntsville (UAH), infers the temperature, T, of 

three broad levels of the atmosphere from satellite measurements of the oxygen radiance in the microwave band, using 85 

advanced (passive) microwave sounding units on NOAA and NASA satellites (Spencer and Christy, 1990; Christy et al., 

2007). The data are publicly available on monthly scale in the forms of time series of “anomalies” for several parts of earth, 

as well as in maps. Here we use only the global average on monthly scale for the lowest level, referred to as the lower 

troposphere, after conversion of “anomalies” to actual temperatures. 

For the more recent years, monthly land surface temperature and emissivity are also available from the Moderate 90 

Resolution Imaging Spectroradiometer (MODIS), a key instrument aboard two satellites: the Terra (originally known as EOS 

                                                           
*
 Anomaly, originally ανωμαλία is the Greek word for abnormality. As the departure from the mean is the normal behaviour 

in all undead systems, the name is clearly a terrible misnomer for the aimed meaning. For this reason here, when we refer to 

data series originally designated as such, we use quotation marks.  
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AM-1) and the Aqua (originally known as EOS PM-1), providing observations since 2000 and 2002, respectively. The 

MOD11C3 Version 6 product provides temperature values on a 0.05° grid, which are derived by compositing and averaging 

the values from the corresponding month of MOD11C1 daily files (Wan, 2013; Wan et al., 2015). Here the Terra data set has 

been retrieved and the average monthly temperature over land was derived by averaging the daytime and nighttime data sets.  95 

 The NCEP-NCAR and ERA5 reanalyses provide more detailed information for T at daily and monthly time scale, not 

only near the surface (2 m above ground) but also at several atmospheric levels, of which those of 1000, 925, 850, 700, 600, 

500, 400 and 300 hPa are used in the study.  

For the same levels, data for relative humidity, U, are also provided at the monthly scale; from the temperature and 

relative humidity, the dew point, Td, can be estimated (equation (4) below). In addition the ERA5 daily reanalysis provides 100 

independently the daily dew point for the surface level. 

2.3 Atmospheric water data 

As already mentioned, the relative humidity, U, is available at the monthly scale at several atmospheric levels for both 

reanalyses. In addition, the specific humidity, q (see equation (5) below), is independently available and was retrieved at the 

levels of 850 hPa, and 300 hPa. The reanalyses fields also include data for the water vapour amount, W (also known as 105 

vertically integrated water vapour, or precipitable water
†
 and expressed in mm or equivalently kg/m

2
).  

In addition, W is provided from satellite observations in two data sets, NVAP and MODIS. The NVAP data set is a 

model-independent dataset relying mainly on satellite measurements, from the NASA Pathfinder project (Vonder Haar et al., 

2012). The monthly data for the period 1988-2009 over the globe are available in the form of a graph, which is digitized 

here. For the more recent years, W is also available from the MODIS satellites Terra and Aqua mentioned above (Platnick et 110 

al., 2015; Hubanks et al., 2015). In addition, the MODIS platforms provide data for the column amount of ice (WCI) and 

liquid water (WCL) in the clouds, also known as cloud ice water path and cloud liquid water path, respectively; these are also 

used in the study. 

2.4 Precipitation data 

Gridded ground data for precipitation rate, P (mm/d), over land are available by the Climate Prediction Center’s (CPC) 115 

unified gauge-based analysis of global daily precipitation for the period 1979 to present. This is based on gauge reports from 

over 30 000 stations, collected from multiple sources including national and international agencies. Quality control is being 

performed through comparisons with historical records and independent information from measurements at nearby stations, 

concurrent radar and satellite observations, as well as numerical model forecasts. Quality controlled station reports are then 

interpolated to create analysed fields of daily precipitation with consideration of orographic effects (Xie et al. 2007). The 120 

daily analysis is constructed on a 0.125° grid over the entire global land areas, and released on a 0.5° grid (Xie, 2010). This 

                                                           
†
 The adjective precipitable for the water vapour amount is a misnomer: if the total water vapour amount in the atmosphere 

was indeed to precipitate in its entirety, this would violate the laws of thermodynamics. 
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dataset has two components, the retrospective version which uses 30 000 stations and spans 1979-2005 and the real-time 

version which uses 17 000 stations and spans 2006-present; the latter have been planned to be reprocessed for consistency 

with the retrospective analysis. Here all data are used for both the daily and monthly scale. 

 Another gridded precipitation data set, this time extending also over the sea, is the data set of the Global Precipitation 125 

Climatology Project (GPCP), which combines gauge and satellite precipitation data over a global grid. The general approach 

is to combine the precipitation information available from each of several satellites and in situ sources into a final merged 

product, taking advantage of the strengths of each data type. Passive Microwave estimates are based on Special Sensor 

Microwave Imager/Special Sensor Microwave Imager Sounder (SSMI/SSMIS) data; infrared precipitation estimates are 

included using Geostationary Operational Environmental Satellite (GOES) data and Polar-orbiting Operational 130 

Environmental Satellite (POES) data, as well as other low earth orbit data and in situ observations (Adler et al., 2016). 

Monthly data are provided on a 2.5° grid and are available for the period 1979 to present. The GPCP daily analysis is a 

companion to the monthly analysis, and provides globally complete precipitation estimates at a spatial resolution of 1° and 

daily time scale from October 1996 to the present. Although derived using both some of the same, but also some different, 

data sets and methods, compared to those used in the GPCP monthly analysis, the daily data add up to the monthly 135 

(Huffman, 2001; Adler, et al., 2017). 

 The NCEP-NCAR and ERA5 reanalyses also provide gridded daily and monthly precipitation data. 

 Information about snow is provided by satellite data. The most complete data set of this type is the snow cover extent 

for the Northern Hemisphere (NH), monitored via satellites by the US National Oceanic and Atmospheric Administration 

(NOAA) from 1966 to present, updated monthly. Data prior to June 1999 are based on satellite-derived maps of NH snow 140 

cover extent produced weekly by trained NOAA meteorologists; after that date, they have been produced by daily output 

from the Interactive Multisensor Snow and Ice Mapping System. The data are provided on a Cartesian grid with 88 × 88 

cells laid over a NH polar stereographic projection, where each grid cell has a binary value, indicating snow covered or snow 

free (see details in Robinson et al., 2012, and Estilow et al., 2015). Snow cover extent in the Southern Hemisphere is not 

currently monitored.  145 

2.5 Evaporation data 

At present, the evaporation rate, E (mm/d), cannot be measured at large scales and is estimated only by models. Here the 

monthly data sets by the NCEP-NCAR and ERA5 reanalyses are used. 

2.6 Other data 

Because much of recent literature is invoking climate-related disasters, some disaster data have been also retrieved 150 

complementarily to the above data sets. In particular, the number of victims per disaster type per year, for the period 1900-

2019, have been retrieved from the OFDA/CRED International Disaster Database (Université Catholique de Louvain, 

Brussels, Belgium; OFRA stands for Office of U.S. Foreign Disaster Assistance; CRED stands for Centre for Research on 
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the Epidemiology of Disasters, Belgium). Furthermore, annual world population data for 1900-2019 are available through 

the United States Census. 155 

2.7 Data access and processing systems 

There are lots of software applications to analyse and process gridded data. Here we are using free web platforms that are 

easy to use and allow direct reproducibility of the results by the interested reader; the links to these platforms are given in 

Table 1.  

Most of the processing in this study has been made via the Climate Explorer (climexp) system of the Royal 160 

Netherlands Meteorological Institute (Koninklijk Nederlands Meteorologisch Instituut; KNMI). This very powerful system 

combines access to many sources of data, including most of the data sets used here but also data from individual stations, 

and multiple processing options. The data access includes, among other options, daily fields of observations and reanalyses, 

monthly observations and monthly reanalysis fields. The processing options include averaging over geographical areas 

(including over pre-specified or user defined “masks”, i.e. polygons defined by a set of connected (x, y) points), aggregating 165 

at larger scales, computing zonal means, making time series and calculating their statistics, and plotting the fields.  

NASA’s Giovanni online web environment is another useful tool for access, display and analysis of NASA’s 

geophysical data (Acker and Leptoukh, 2007). A similar system for NOAA’s data, which also incorporates data for fields of 

additional sources, is the Web-based Reanalyses Intercomparison Tools (WRIT; Earth System Research Laboratory's 

Physical Sciences Division; see Smith et al., 2014).  170 

Access to some of the data which are not contained in the above three systems is provided by other platforms as 

specified in Table 1. 

3 Atmospheric water 

For the study of atmospheric water, air temperature is an important variable and thus we start with this. Figure 1 (left) shows 

the evolution of global average temperature at the level of 2 m above ground at the monthly and annual scale, according to 175 

both reanalyses data, NCEP-NCAR and ERA5. In addition, Figure 1 (right) depicts satellite data in comparison to reanalysis 

ones, but at a higher altitude. Specifically, the UAH satellite time series is used, which refers to the lower troposphere. 

Comparing this to reanalysis data at several pressure levels, we found that it roughly corresponds to weighted averages of 

those at the levels of 500 and 700 hPa with weights 0.62 and 0.38, respectively. Figure 1 shows a good agreement of all three 

information sources at both pressure levels. At the same time, they show a gradual increase of temperature, with about the 180 

same rate of increase. All three sources provide complete information for the last 40 years, while one of them, NCEP-

NCAR, has a longer span, 68 years.  

If we split the common 40-year period into two parts, we may compare the climatic values on a 20-year climatic scale 

and calculate the temperature increase. This is done in Table 2, where an increase of 0.38 °C can be seen for the globally 
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averaged temperature using the ERA5 reanalysis, corresponding to 0.19 °C per decade. By reducing the time window of the 185 

period defining climate from 20 to 10 years, we can determine the difference of (a 10-year average) climate over 30 years, 

which is 0.56 °C, again 0.19 °C per decade. For the UAH satellite data set, which is less affected by urbanization because of 

the higher elevation, the 30-year difference is lower, 0.39 °C, or 0.13 °C per decade.  

In addition, Table 2 provides similar information for the land and sea parts of the earth, in terms of average 

temperatures as well as dew points. The dew point, defined as the temperature at which the air must be cooled to become 190 

saturated with water vapour, is a more useful variable than temperature for the study of atmospheric water. The time 

evolution of both variables on earth, land and sea can be seen altogether in Figure 2 (left). All these are based on ERA5 

reanalysis information, as this is the only one readily provided for further processing through the climexp platform, both for 

temperature and dew point at the surface level. As a means of verification, the MODIS surface temperature over land is also 

plotted in Figure 2 (left), which compares well (albeit with a little bias) with the ERA5 temperature over land. It can be seen 195 

in Figure 2 and Table 2 that the evolution of dew point is also increasing in the recent period, but the increase is lower than 

that of temperature.  

A practical way to express what the increasing rates represent can be obtained by calculating an offset distance on 

earth, which moving poleward in the temperate zone, would offset the average decadal increase of temperature or dew point. 

This is given in the last column of Table 2 and is 31 km per decade for the surface global temperature and 21 km per decade 200 

for the lower troposphere temperature and the surface dew point. This conversion was based on the zonal temperature and 

dew point profiles shown in Figure 2 (right); for the temperate zone (±23.5° to ±66.5°) the fitted slopes in the profiles are 

±0.68 °C/° and ±0.56 °C/°, respectively, while one degree of latitude corresponds to 111 km.  

It is quite interesting to assess the zonal variation of the increase of temperature and dew point. This information is 

provided by Figure 3 where we plot the difference of the earth temperature and dew point (according to the ERA5 205 

reanalysis) from their averages in the period 1980-99. A positive difference corresponds to an increase after 1999. It is 

important to note that the greater increases are located in the northern polar area. In the tropical zone, which is 

hydrologically most important as the main source of evaporated water, the increase is half the global average, while there is 

no increase at all in the dew point. The latter point is of highest hydrological significance. 

The transition from a temperature-based description of atmospheric processes to a more hydrologically meaningful 210 

one is provided by the Clausius-Clapeyron equation, i.e. the law determining the equilibrium of liquid and gaseous phase of 

water, which maps temperatures to saturation vapour pressures. Koutsoyiannis (2014b) has highlighted the probabilistic 

nature of the law by deriving it purely by maximizing probabilistic entropy, i.e. uncertainty. In particular, the law was 

derived by studying a single molecule and maximizing the combined uncertainty of its state related to: 

(a) its phase (whether gaseous, denoted as A, or liquid, denoted as B); 215 

(b) its position in space; and 

(c) its kinetic state, i.e., its velocity and other coordinates corresponding to its degrees of freedom and making up 

its thermal energy.  
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Denoting the saturation vapour pressure as e and using the notion of the so-called natural temperature θ, with units of 

energy (joules) rather than temperature (kelvins), in accordance to the probabilistic principle that entropy is a dimensionless 220 

quantity φ, (specifically, 1/𝜃 ≔ 𝜕𝜑/𝜕𝜀Ι with εI denoting thermal energy), the resulting equation is: 

𝑒 = 𝑒0 exp (  
   
 
𝜉

𝜃0

(1 −
𝜃0

𝜃
))  
   
 

 (
𝜃0

𝜃
)
𝛽Β/2 − 𝛽Α/2 −1

 (1) 

where (θ0, e0) are the coordinates of the triple point of water (specifically, θ0 = 37.714 yJ corresponding to T0 = 273.16 K, 

e0 = 6.11657 hPa), ξ is the phase change energy (the amount of energy needed to break the liquid-phase bonds with other 

molecules), and βA and βB are the degrees of freedom of a water molecule in gaseous and liquid phase, respectively 

(specifically βA = 6, βB ≈ 18). The same law can be written in more customary notation, in terms of absolute temperature in 225 

kelvins and using macroscopic quantities, as (Koutsoyiannis, 2012):  

𝑒 = 𝑒0 exp (  
   
 

𝛼

𝑅𝑇0

(1 −
𝑇0

𝑇
))  
   
 

 (
𝑇0

𝑇
)
(𝑐L−𝑐𝑝)/𝑅

 (2) 

where (T0, e0) are again the coordinates of the triple point of water, R is the specific gas constant of water vapour (R = 461.5 

J kg
–1

 K
–1

, α ≔ ξR/k = ξNa (with k the Boltzmann’s constant and Na the Avogadro constant), cp is the specific heat at constant 

pressure of the vapour and cL is the specific heat of the liquid water. By substitution of the various constants we end up with 

the following form of the equation (Koutsoyiannis, 2012): 230 

𝑒 ≔ 𝑒(𝑇) = 𝑒0 exp (24.921 (1 −
𝑇0

𝑇
)) (

𝑇0

𝑇
)
5.06

 (3) 

This form is both convenient and accurate (more accurate than other customary forms, theoretical or empirical, as illustrated 

in Koutsoyiannis, 2012).  

A state in which the vapour pressure e is lower than the saturation pressure e(T) is characterized by the relative 

humidity:  

U ≔
𝑒

𝑒(𝑇)
=

𝑒(𝑇𝑑)

𝑒(𝑇)
 (4) 

which serves as a formal definition of both the relative humidity U and the dew point Td. Figure 4 depicts the evolution of 235 

the saturation water pressures e(T) and e(Td) for the average temperature T and dew point Td, as the latter are shown in Figure 

2, while Table 3 shows their changes per 20-year climatic periods. 

It is important to note that all above quantities and derivations do not depend on the presence or not of other 

atmospheric gases and hence on the air pressure p. To take account for the other gasses in the air, which constitute the 

biggest part, known as the dry air, we use the specific humidity: 240 
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𝑞 ≔
𝑀v

𝑀v + 𝑀d

=
𝜌v

𝜌v + 𝜌d

 (5) 

where Mv and Md are the masses of vapour and dry air in a certain volume V, and ρv and ρd the corresponding densities. The 

evolution of specific humidity at two atmospheric levels, 850 and 300 hPa, according to the NCEP-NCAR and ERA5 

reanalyses, is depicted in Figure 5 for the entire earth as well as the land and sea parts. For the 850 hPa level the two sources 

of data agree to each other: they indicate fluctuation over time, with no monotonic trend. The climatic differences according 

to the NCEP-NCAR reanalysis are shown in Table 4 where it is remarkable that in the land part at the 850 hPa level the 245 

difference is negative. For the 300 hPa level the two sources of data divert substantially and, most importantly, the NCEP-

NCAR suggests a decreasing trend while ERA5 suggests an increasing trend. We will examine this diversion below. Table 4 

shows that the change in the NCEP-NCAR data is negative not only in land, but also in the sea part and the entire earth. 

To connect specific humidity to pressures, we use the law of ideal gases, which again can be derived by maximizing 

probabilistic entropy (Koutsoyiannis, 2014b) and takes the form: 250 

𝑝𝑉 = 𝑁𝜃 (6) 

where p is the pressure and N the number of molecules. Writing this law separately for water vapour and dry air (e V = Nw θ,  

(p – e) V = (N – Nw) θ, where N is the total number of molecules in volume V, of which Nw are water molecules) after 

algebraic manipulations we find: 

𝑞 =
𝜀𝑒

𝑝 − (1 − 𝜀)𝑒
 (7) 

where ε is the ratio of the molecular mass of water to that of the mixture of gases in the dry air, i.e., ε = 18.016/28.966 = 

0.622. 255 

It has been a common assumption, based on the Clausius–Clapeyron relationship, that the global atmospheric water 

vapour should increase by about 6%–7% per °C of warming (e.g. Wuebbles et al., 2017). In turn, this assumption is based on 

another assumption, that on the planetary scale, relative humidity is projected to remain roughly constant, but specific 

humidity is projected to increase in a warming climate (IPCC, 2013, p.91). Indeed, combining equations (3), (4) and (7), and 

considering that e ≪ p we find: 260 

𝑞 ≈
𝜀𝑈𝑒0

𝑝
exp (24.921 (1 −

𝑇0

𝑇
)) (

𝑇0

𝑇
)

5.06

 (8) 

It is then easy to verify that for a certain atmospheric level (p = constant) the following relationship holds true: 

d𝑞

𝑞
≈

d𝑒

𝑒
= (24.921

𝑇0

𝑇
− 5.06)

d𝑇

𝑇
+

dU

U
 (9) 
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Under the assumption that U is constant (dU = 0), irrespective of the increase of temperature, it is seen that for T = T0 = 

273.16 K, dq/q = 7.3% dT, while for T = 25 °C = 298.15 K, dq/q = 6% dT, as assumed by IPCC.  

 However, despite the assumption dU = 0 being established, the real world data do not confirm it. As we have already 

seen in Figure 3, in the tropical area, which is most significant as a source of atmospheric moisture, the dew point (and hence 265 

e) remains virtually constant, despite the fact that the temperature (and hence e(T)) increases. Clearly, this means that the 

relative humidity U has decreased with the increase of temperature. This appears to be the case in all of the time series we 

examined (entries 6 and 7 in Table 1). By combining the latter time series with those of temperature (entries 3 and 4 in Table 

1) and using equations (3) and (4), we constructed in Figure 6 the vertical profile of the difference of average water vapour 

pressure e(T) and e(Td) = U e(T) over land at levels of atmospheric pressure ranging from 1000 to 300 hPa. The focus on the 270 

land part of the earth is justified because most of hydrological processes are occurring in this part. For the NCEP-NCAR 

data, the differences plotted in the figure are of the 30-year climatic periods 1948-77 and 1990-2019 and for the ERA5 data 

of the 20-year climatic periods 1980-99 and 2000-19. If the assumption of unchanging relative humidity was valid (dU = 0) 

then the profile of the actual vapour pressure Δe(Td) would be proportional to the saturation water pressure Δe(T), i.e. Δe(Td) 

= U Δe(T). The resulting curves would then be the dotted lines in Figure 6 corresponding to the actual Δe(T) of the two 275 

periods but with relative humidity U estimated from the first climatic period (as it was assumed dU = 0). However the real 

Δe(Td) series depart dramatically from these dotted lines. It is notable that for the NCEP-NCAR data it even becomes 

negative for a large part of the troposphere (p < 700 hPa or elevation > 3 km).  

We may try to roughly approximate equation (9) by: 

d𝑞

𝑞
≈

d𝑒

𝑒
≈ 𝐶 (24.921

𝑇0

𝑇
− 5.06)

d𝑇

𝑇
 (10) 

with a constant parameter C, which would be unity if dU = 0 held true, but in fact it is much lower. Using weighting least 280 

squares on the data of Figure 6 we estimated C ≈ 1/3. This suggests that, contrary to the IPCC (2013) expectation, the global 

atmospheric water vapour over land is increasing by only about 2% per °C of global warming. In this case we may expect a 

4% increase of atmospheric water in the celebrated (yet contradictory) target of 2 °C of global warming. From a hydrological 

point of view, given the high variability and uncertainty of the processes (cf. the motto in the beginning of the article), a 4% 

change may be deemed negligible. Nonetheless, the analyses that follow indicate that even the reduced rate of 2% per °C of 285 

global warming may be overestimated, particularly if it be translated into intensification of hydrological cycle.  

 By integrating the specific humidity over a vertical column of air from a low altitude z0 (typically the surface altitude) 

corresponding to air pressure p0, to a high altitude z1 (e.g. the tropopause) corresponding to air pressure p1, we define the 

(vertically integrated) water vapour amount. Specifically, the water vapour amount is: 

𝑊 ≔
1

𝜌w

∫𝜌vd𝑧

𝑧1

𝑧0

=
1

𝜌w𝑔
∫𝑞d𝑝

𝑝0

𝑝1

 (11) 

https://doi.org/10.5194/hess-2020-120
Preprint. Discussion started: 20 March 2020
c© Author(s) 2020. CC BY 4.0 License.



11 

 

where ρw (= 1000 kg/m
3
) is the liquid water density and g (= 9.81 m/s) is the gravity acceleration.  290 

The study of the temporal variation of W is much more informative than q or e because of the vertically integration of 

information. Both NCEP-NCAR and ERA5 reanalyses provide data for this variable (entries 12 and 13 in Table 1). In 

addition, we have satellite observations of W (entries 10 and 11 in Table 1), one of which (MODIS) gives also layered 

information. Figure 7 depicts the evolution of W according to all sources of information, for the entire earth as well as the 

land and sea parts. The NCEP-NCAR and ERA5 reanalyses agree impressively well to each other: they indicate fluctuation 295 

over time, with no monotonic trend. The NVAP satellite data also agree on the average, indicating no trend. However, the 

most recent MODIS satellite data suggest a decreasing trend, just the opposite of the IPCC assumptions discussed above. As 

seen in Figure 8, which provides layered information for the MODIS data, the decreasing trend is more pronounced in the 

upper atmospheric levels (440 to 10 hPa). This observation, compared to Figure 5 (right) and in view of the above discussion 

(related to Figure 5 and Table 4) about the divergence of specific humidity trends at 300 hPa between the NCEP-NCAR and 300 

ERA5 reanalyses, confirms the former and falsifies the latter. The climatic differences in W according to the NCEP-NCAR 

reanalysis, which covers a longer (68-year) period, are given in Table 5, where it can be seen that there is a decrease not only 

in the land part, but also in the entire earth.  

For completeness, of the discussion about atmospheric water, Figure 9 depicts the variation of the cloud water amount 

in ice and liquid phase according to MODIS satellite data. Again no monotonic trend is seen. Compared to the water vapour 305 

amount (Figure 8), the cloud water is a very small quantity (two orders of magnitude smaller).  

4 Precipitation and evaporation 

While the analysis of atmospheric water in the previous section signifies potentialities at the hydrological cycle intensity, the 

analysis of precipitation rate signifies actualities. While, as already mentioned, the potentiality (the global atmospheric water 

vapour) was expected by IPCC to increase by about 6%–7% per °C of warming, the actuality (the precipitation rate) should 310 

be lower. Specifically, according to IPCC’s latest (Fifth) Assessment Report (IPCC, 2013, p. 91): 

It is virtually certain that, in the long term, global precipitation will increase with increased GMST. Global mean 

precipitation will increase at a rate per °C smaller than that of atmospheric water vapour. It will likely increase by 1 to 

3% °C
–1

 for scenarios other than RCP2.6. For RCP2.6 the range of sensitivities in the CMIP5 models is 0.5 to 4% °C
–1

 

at the end of the 21st century. […] Changes in average precipitation in a warmer world will exhibit substantial spatial 315 

variation under RCP8.5.  

The rate of increase of precipitation, necessarily accompanied by an equal rate of increase of evaporation, has been 

known as sensitivity of the hydrologic cycle (or hydrological sensitivity). The smaller rate, compared to that in atmospheric 

water, has been estimated based on climate model simulations. Furthermore, Kleidon and Renner (2013), based on analytical 

calculations and thermodynamics, have estimated a hydrological sensitivity of 2.2% C
–1

, within the IPCC “very likely” 320 
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range. Even accepting this IPCC assertion, it may be puzzling why hydrologists have given so much energy in studying 

hydrological impacts that are a priori framed in the range of 1% to 3% per °C. For in hydrology such percentages are 

negligible compared to the natural variability and the uncertainty even in the measurement of precipitation. Moreover, since 

the potentiality part (the expected increase of atmospheric water) has been already questioned, we may expect that in the 

actuality context the changes in precipitation are even less recognizable than implied by IPCC.  325 

Indeed Figure 10, which depicts the evolution of precipitation rate on earth and its land and sea parts, based on gauged, 

satellite and reanalysis information, suggests that precipitation fluctuates through the seasons and also through the years, but 

without a monotonic trend. The marked differences among the various sources of information are also indicative of a 

substantial uncertainty in the estimation of precipitation.  

The snow part of precipitation is also interesting to examine, as snow is more directly related to temperature. Figure 11 330 

depicts the evolution of the snow cover in the Northern Hemisphere. Despite temperature increase, no noticeable change 

appears on the annual basis. However, there are perceptible changes in the seasonal variation: in the most recent period the 

snow cover has decreased during the summer months and increased during the autumn and winter months.  

As already mentioned, the evaporation rate is difficult to estimate and even more so to measure. The available gridded 

data come from reanalyses. Their plots in Figure 10 again show fluctuations through the seasons and through the years, and 335 

no monotonic trends. 

5 Water balance 

The analyses of atmospheric water, as well as those of precipitation and evaporation, reveal two important points: (a) all 

processes fluctuate in time at all time scales and (b) no monotonic trends that would be attributed to temperature increase 

appear in any type of data. In some cases (e.g. satellite observations of water vapour amount) there appear some trends, 340 

which, however, are opposite to established expectations. Here we treat them as irregular fluctuations, which appear as 

monotonic trends because of the limited time window of observation. Consequently, in subsequent analyses we make all 

estimations on the basis of stationarity. It must be stressed that stationarity does not mean absence of change. It simply 

means that the change, however large, resists a deterministic description and hence a stochastic description becomes more 

appropriate and powerful (Montanari and Koutsoyiannis, 2014; Koutsoyiannis and Montanari, 2015). Additional justification 345 

of this choice is provided in next sections. 

A rather impressive result, shown in Figure 10 (upper) is that the precipitation and evaporation over the entire earth in 

the NCEP-NCAR reanalysis agree very well to each other, indicating conservation of mass, a property that is not granted in 

reanalyses. Indeed, on annual time scale, the differences between the global precipitation and evaporation are small, ranging 

between +0.5% and –4.1%. This provides a good basis for estimating the water balance in terms of fluxes in the hydrological 350 

cycle. The ERA5 reanalysis is not as good in this respect as the NCEP-NCAR one. We note, though, that even the small 

differences on the global scale are amplified when we examine the land and sea separately. This is seen in Figure 12, which 
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depicts the water balance derived from the difference of precipitation and evaporation at land and sea. Here the fluxes were 

converted from mm/d used in other analyses to km
3
/year, considering that the earth has an area of 510 072 000 km

2
, of 

which 28.44% is land and 71.56% sea. The amplification of discrepancies (a known effect when taking differences of two 355 

processes) is evident in Figure 12. In particular, the figure shows that the ERA5 reanalysis is, in a systematic manner, far 

from conserving water mass in the period prior to 2000, but it was much improved in the years 2000-15, worsening again in 

the most recent years. The NCEP-NCAR does not indicate systematic error patterns.  

Before proceeding to water balance estimation, we stress the importance of that balance in quantifying the availability 

of water resources. Contrary to most other common goods (e.g. fossil fuels and metals) that are subject to depletion, water 360 

resources are renewable, not reserves. In this respect, hydrology should fight the common misrepresentation (or even 

misconception in reports from media and information provided to the wider public and decision makers), implied by the 

popular use of graphs like that in Figure 13. The correctness of the information on the graph, which shows where on earth 

water is stored, is not questioned. However, the graph gives wrong impressions or messages. As an example, it suggests that 

the vast majority of liquid freshwater on earth is groundwater, while the river water is almost negligible. However, 365 

considering the renewable character of water resources, the truth is just the opposite: the vast majority is river water, while 

groundwater is almost negligible, as will be detailed below. For that reason, a caution stamp is added to Figure 13. 

We now proceed to calculations, noting that their precision will be of the order of 100 km
3
/year; thus any calculated 

quantity is rounded off to multiples of this value. The water balance at the land and sea parts of the earth is written, 

respectively: 370 

d𝑆L

d𝑡
= 𝑃L − 𝐸L − 𝑅 − 𝐺,

d𝑆S

d𝑡
= 𝑃S − 𝐸S + 𝑅 + 𝐺 (12) 

where 𝑃L and 𝑃S are the precipitation flux over land and sea, respectively, 𝐸L and 𝐸S are the evaporation flux over land and 

sea, respectively, 𝑅 and 𝐺 are the surface runoff and submarine groundwater discharge to the sea, respectively, 𝑆L and 𝑆S are 

the storages at land and sea, respectively, and t is time (see Figure 14). Underlined symbols denote stochastic variables or 

stochastic processes. Assuming that the water density is 1000 kg/m
3
 (i.e. neglecting variation due to temperature), the fluxes 

can be expressed as volumes per time, which in turn are rates multiplied by areas; for example, 𝑃L ≔ 𝑃𝐴L is the precipitation 375 

flux over land [L
3
T

–1
], where 𝑃 is the precipitation rate [LT

–1
] averaged over land, and 𝐴L [L

2
] is the land area. Assuming 

zero storage change in the atmosphere (an assumption supported by the analyses of section 3), we can write:  

d𝑆L

d𝑡
+

d𝑆S

d𝑡
= 0 (13) 

Combining (12) and (13) we find:  

𝑃L + 𝑃S = 𝐸L + 𝐸S (14) 

Hence, we can write: 
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𝑃L − 𝐸L = 𝐸S − 𝑃S ≕ 𝐴 (15) 

where 𝐴 is the advection, i.e., the flux of water mass from sea to land through atmospheric processes. 380 

 On the other hand, changes in land and sea water storage are not negligible. With reference to Figure 13, the land 

storage can be decomposed in five compartments, ice (glaciers), 𝑆Ι, snow, 𝑆S, biosphere (living things), 𝑆B, surface water, 

𝑆SW, and groundwater (including soil water), 𝑆GW. Hence: 

d𝑆L

d𝑡
=

d𝑆Ι

d𝑡
+

d𝑆S

d𝑡
+

d𝑆B

d𝑡
+

d𝑆SW

d𝑡
+

d𝑆GW

d𝑡
 (16) 

 For the ice loss, Syed et al. (2009), on the basis of the average of two earlier studies, estimated a quantity of –284 

± 59 km
3
/year, which refers to Greenland and Antarctica. A newer study by Velicogna and Wahr (2013), based on GRACE 385 

satellite data, found a change of –258 ± 41 km
3
/year for Greenland and –83 ± 49 km

3
/year (or somewhat larger using another 

model) for Antarctica. As noted by Velicogna et al. (2014) the total mass loss is controlled by only a few subregions in 

Greenland and Antarctica and are mostly due to ice dynamics, where the latter term means the motion within large bodies of 

ice; in turn, this is controlled mainly by the temperature and strength of their bases, rather than the atmospheric temperature. 

In a more recent study based on satellite data, Zwally et al. (2015) reported that the mass gains of the Antarctic ice sheet 390 

exceed losses by 82 ± 25 km
3
/year (or somewhat greater, 112 ± 61 km

3
/year, using a different data set); the study triggered 

controversy with several comments are replies. For the entire area covered by glaciers, including regions distinct from the 

Greenland and Antarctic Ice Sheets, Gardner et al. (2013), using satellite gravimetry and altimetry, and local glaciological 

records, estimated the global mass budget to –259 ± 28 km
3
/year. In line with the latter study, here we assume E[dSI/dt] =  

–300 km
3
/year for the contemporary period.  395 

For the snow storage, the snow data analysed in section 4 allow the assumption of a zero mean change at the annual 

and overannual scales, even though at seasonal scales it is certainly not negligible (see Figure 11). For the water in the 

biosphere, there must be a positive change as in the 21st century the earth has been greening, mostly due to CO2 fertilization 

effects (Zhu et al., 2016) and human land-use management (Chen et al., 2019). Specifically, the MODIS data show a net 

increase in leaf area of 2.3% per decade (Chen et al., 2019) but it is difficult to translate this into a net increase in water 400 

stored in the biosphere. Nonetheless, we do not expect this change to be large (in comparison to other changes) and we will 

neglect it. For the surface water storage, while in the past there appeared substantial depletion of several large natural lakes, 

mostly due to overexploitation of their water, we assume a zero (further) change for the contemporary period. 

For the groundwater storage change, which we expect to be significant, Wada et al. (2010) have estimated a global 

depletion rate of 283 ± 40 km
3
/year in 2000, while in their recent review article, Bierkens and Wada (2019) report estimates 405 

from later studies, based on global hydrological models and GRACE data, which vary from 90 to 510 km
3
/year for the recent 

years. These justify an average estimate of E[dSGW/dt] = –300 km
3
/year for the contemporary period.  

 In summary, we have assumed: 
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E [
d𝑆Ι

d𝑡
] = E [

d𝑆GW

d𝑡
] = −300 km3 year⁄ , E [

d𝑆SA

d𝑡
] = E [

d𝑆B

d𝑡
] = E [

d𝑆SW

d𝑡
] = 0 (17) 

Accordingly, the water storage in land has a total loss of 600 km
3
/year, which is a gain to the storage in the sea. This mass 

gain corresponds to an increase of sea level equal to 1.64 mm/year (not accounting for thermal expansion and tectonic 410 

processes).  

 The submarine groundwater discharge (or groundwater outflow to the sea) is the most difficult to estimate. A most 

recent estimation has been conducted by Zhou at al. (2019) using a water budget approach at high resolution. They examined 

the near‐global coastal recharge areas (60°N to 60°S) and provided spatially distributed high‐resolution estimates using 

average infiltrating runoff from three land surface models (MOSAIC, NOAH, and VIC) obtained from NASA's Global Land 415 

Data Assimilation System. They concluded with a near‐global estimate of submarine groundwater discharge at 489 ± 337 

km
3
/year, noting that 56% is the export in tropical coasts, while mid-latitude arid regions export only 10%. In line with this 

recent estimate, here we assume: 

E[𝐺] = 500 km3/year (18) 

This choice needs some further explanation, as it is substantially (by 4-5 times) lower than the commonly adopted 

earlier estimates, such as those by Shiklomanov and Sokolov (1985), and Zekster and Loaiciga (1993, citing Zektser and 420 

Dzhamalov, 1981), which are 2200 and 2400 km
3
/year in the two studies, respectively, or about 5-6% of total runoff; the 

latter quantity had been estimated to 46 800 and 38 000 km
3
/year in the two studies, respectively.  

An even earlier, yet frequently cited, estimate by Lvovitch (1970), is somewhat lower, 1600 km
3
/year. Lvovitch did 

not obtain this estimate himself but cites Nace (1964) for suggesting it, also noting that he finds it reasonable. Surprisingly 

however, in another article, Nace (1967) clearly states that this value is arbitrary. Specifically, his footnote to “Ground-water 425 

outflow to oceans” in his Table 1 (which, notably, mixes water stocks and fluxes) is verbatim: “Arbitrarily set equal to about 

5 percent of surface runoff”. In addition, it seems that Nace has made a numerical error as the value he gives for surface 

runoff is 38 000 km
3
/year; hence, the 5% thereof is 1900 km

3
/year rather than 1600 km

3
/year.  

These old estimates have been adopted (by citing the above studies) in most papers and textbooks until now, either in 

its percentage version (e.g. 5% in Dai and Trenberth, 2002, who cite Lvovitch, 1970) or in absolute values, mostly adopting 430 

Shiklomanov and Sokolov’s (1985) values of 2200 and 46 800 km
3
/year for the groundwater and total runoff, respectively 

(Dingman, 1994; Khedun and Singh, 2017).  

Values even much higher than those have also been published; for example in a celebrated paper, Oki and Kanae 

(2006) assert:  

some part of the water, approximately 10% of total river discharge [Church, 1996], infiltrates to deep underground 435 

and will never appear as surface water but discharge into the ocean directly from groundwater. 
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And, indeed, Church (1996) contains this 10% estimate, but also refers to a wide range, between 1% and 10%, without 

performing own analyses. He further implies that the 10% estimate was proposed by Zektzer et al. (1973). However, this 

value in Zektzer et al. refers to the groundwater discharge to the Lake Ladoga and, coincidentally, to some results for the 

United States by Nace (1969). In general, the review and methodological paper by Zektzer et al. (1973) does not contain any 440 

information on the global scale.  

The only case of a low estimate, of the order of that used here, is in Nace’s (1970) paper, which appears to be the first 

in history quantitative analysis of the groundwater discharge to the sea. Surprisingly, only three years after his 5% 

“arbitrarily set” guess, Nace (1970) came up with the quantitative estimate of 7 000 m
3
/s, or about 220 km

3
/year, that is 7-9 

times smaller (depending on the correction or not of his aforementioned error) than his own initial guess. Subsequently he 445 

remarks:  

The average total runout [i.e., submarine groundwater discharge] then would be about 7 000 m
3
 s

–1
. This is less than 1 

percent of estimated surface runoff. While the calculation is wholly hypothetical, it is based on liberal assumptions. In 

order to be significantly large the value would have to be greater by a factor of 5. Evidently, runout is negligible in 

relation to the world water balance, though it is significant within some regions. 450 

It is thus likely that behind the initial 5% guess, as well as its eager adoption by later researchers, was a desire “to be 

significantly large the value”. However, one may think that such an overestimation of the groundwater flux, in addition to 

overemphasizing the (large) groundwater stock mentioned above, may have offered bad service both to science and water 

management, as it may have encouraged the overexploitation (far beyond the natural recharge rate) of groundwater, with 

consequences such as the subsalinization of coastal aquifers, the subsidence of land areas and the rise of sea level. The 455 

quotation and the whole story may also be didactic as it illustrates the adverse consequences of convictions about what “the 

value would have to be”, else known as confirmation biases.  

 The fact is that the estimate of 220 km
3
/year has remained unnoticed in the literature. The general preference has been 

to quote, misquote, or confirm the 5% guess, as indicated in the above references. To complete this timeline of consistent 

distortion, the following excerpt from Zhou et al. (2019) is quite indicative: 460 

Integrated over the near‐global coastline, the total annual volume of fresh SGD [submarine groundwater discharge] is 

489 km
3
/year ±337 km

3
/year, or 1.3% of river discharge (Dai & Trenberth, 2002), in line with previous estimates 

(Church, 1996; Zekster & Loaiciga, 1993).  

While, as already stated, here we fully adopt the estimate of Zhou et al., which is closer to Nace’s (1970) estimate than to 

any other, the authors’ assertion that their value of 1.3% is in line with those they cite (which as explained above are 5% to 465 

10%, or 4 to 8 times larger, even though Church mentions the 1% case) is surprising. Perhaps a statement such as the above, 

which hides big disagreements among estimates, hinders the discussion of an important issue. Without an extensive 

discussion the issue remains open; hopefully the discussion here has shed some light but it is not the scope of this article to 

resolve this open problem.  
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 The above detailed review and discussion was about small quantities in water balance. Fortunately, the big quantities, 470 

precipitation and evaporation over land and sea, are much more accurately estimated and the NCEP-NCAR reanalysis 

provides a good basis for estimation. As already stated, the error in satisfying equation (14) is +0.5% and –4.1% on the 

annual scale. Given the above assumptions, the unknown quantities are the runoff R and the advection A. Their expectations 

will be:  

E[𝑅] = E[𝑃L] − E[𝐸L] − E[𝐺] − E [
d𝑆Ι

d𝑡
] − E [

d𝑆GW

d𝑡
] , E[𝐴] = E[𝐸L] − E[𝑃L] (19) 

while, with the numerical values assigned to the last three terms in the former equation, we will have E[𝑅] − E[𝐴] = 100 475 

km
3
/year. 

To procced, we assume that the precipitation values are more reliable, as they are crosschecked with satellite data, 

and we adjust the evaporation data so as to precisely satisfy equation (14). A sensitivity analysis of the effect of allocating 

the error in the resulting water balance is shown in Table 6. If we allocate the entire error to sea evaporation, the resulting 

mean runoff is 30 800 km
3
/year while if we allocate it to land evaporation it increases to 37 300 km

3
/year. However, a 480 

proportional adjustment in both land and sea seems more reasonable. In this case the resulting average runoff is 32 000 

km
3
/year and the advection 31 900 km

3
/year. All these quantities are graphically illustrated in Figure 14. The figure includes 

also information of the climatic variability on a 30-year climatic scale of the averages given; explanations about the values 

noted will be given in section 8. We stress that variability does not coincide with uncertainty. The former corresponds to the 

fact that climate is varying. While climatic variability translates to uncertainty when future predictions are cast, there are 485 

additional sources of uncertainty, such as errors in the data and assumptions.  

 If we apply equations (19) dropping the expectations, i.e. using the time varying values, what we will get is not the 

actual runoff and advection, because some storage changes not included in the equation, such as in snow, in soil water and in 

atmospheric water, are not identically zero; rather their mean is zero. On the annual basis it may be expected that the error is 

negligible but on monthly scale it will be present. Nonetheless, such an exercise is useful to conduct to see the temporal 490 

variability. This is depicted in Figure 15, where for rigour in terminology we have replaced the terms “runoff” and 

advection” with “water balance from land” and “water balance from sea”, respectively. The right panel of Figure 15 depicts 

the mean monthly averages, which differ remarkably. The differences are related to the within-year storages not included in 

the equation and look quite reasonable. As the northern hemisphere dominates in land processes, it is reasonable to expect 

that in the period December-May the storage is increasing, while during July-October it is decreasing. 495 

Compared to the popular estimates by Shiklomanov and Sokolov (1985), and Zektser and Dzhamalov (1981), which 

as already noted are 46 800 and 38 000 km
3
/year, respectively, our estimate of mean total (surface and groundwater) runoff 

of 32 500 km
3
/year is markedly lower. However, it is (almost precisely) equal to the estimate by Syed et al. (2009; their 

Table 6), which is based on observed terrestrial water storage changes from GRACE and reanalysis data. The latter study (in 

its Table 5) quotes also older estimates, since 1975, which range from 22 000 to 40 000 km
3
/year. A newer monography by 500 
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Dai (2016) provides an estimate at about 36 500 km
3
/year, very close to the estimate by Zektser and Dzhamalov (1981), as 

well as to the value 38 450 km
3
/year estimated by Ghiggi et al. (2019), based on GRUN for the period 1902 – 2014; the latter 

authors also report results from earlier studies ranging from 30 000 to 66 000 km
3
/year. On the other hand, the recent study 

by Schellekens et al. (2017) suggests a value of about 46 300 km
3
/year, very close to that by Shiklomanov and Sokolov 

(1985). According to Schellekens et al. (2017), the terrestrial precipitation is 119 700 km
3
/year (against 123 300 of the 505 

present study) and the evaporation 74 5000 (against 91 400 of the present study); thus, it is the difference in evaporation that 

makes the latter study inconsistent with the present one. 

Figure 16 provides a comparison of runoff time series (or balances in land and sea) from the present study with earlier 

studies. The differences in estimates are apparent and translate in a huge uncertainty about the true value of runoff. Apparent 

is also a satisfactory agreement of the present study with that of Syed et al. (2009). Some of the studies provide ensemble 510 

values, but in Figure 16 only the ensemble means are plotted (the upper limits of ensembles would exceed the plotting area). 

In view of the high uncertainty, it seems not meaningful to search for trends in runoff. We may notice, though, that in the 

time series of the present study, there appear higher values in recent years. These values correspond to increased rainfall in 

NCEP-NCAR reanalysis over land. This, however, is not confirmed by the gauge and satellite observations (Figure 10), 

which, as already discussed, indicate falling trends. Therefore, the changes will be interpreted as irregular fluctuations within 515 

a frame of very high uncertainty, rather than monotonic trends, which clearly are not.  

The latter interpretation is consistent with the results of a large-scale study of trends in the flow of 916 world’s largest 

rivers by Su et al. (2018). The results, and specifically those in their Table 1 that take into account the long-term persistence, 

show some trends, either positive (3.7% of the rivers) or negative (8.2% of the rivers). While negative trends are more 

common than positive in number, they have slightly lower slopes, so that overall the positive slopes slightly surpass the 520 

negative ones (9.1 vs. –7.2 hm
3
/year).  

6 Extremes and impacts – Does wet become wetter? 

The preceding data and analyses, particularly those of atmospheric water, can hardly support intensification of the global 

hydrological cycle. Certainly they reveal changes but the changes appear as multiyear fluctuations, not as persistent trends. 

These fluctuations do not correspond to popular hypotheses attributing changes to global warming. On the other hand, a 525 

large body of literature attempts to re-establish intensification on the basis of extremes. There is no shortage of studies that 

diagnosed such intensification. To refer to just one example, the results of Donat et al. (2016) and specifically those in their 

Figure 1 referring to the annual-maximum daily precipitation, show some increase in the recent decades, which perhaps 

inspired their article title “More extreme precipitation in the world’s dry and wet regions.” However, examining their graphs, 

it is seen that the climatic value of annual maximum daily rainfall of the 30-year period 1980 – 2010, compared to that of 530 

1960-80, is greater by 5% for dry areas and by 2% for wet areas. These percentages may perhaps not be meaningful to a 

hydrologist who deals with real-world planning and design. Also specifying particular areas such as dry and wet (which are 
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rather arbitrarily defined and in the above study represent a small portion of the globe) and neglecting others, may distort the 

entire global picture.  

 Extremes are connected to disasters. Shortage of disasters has never been the case but our perception on them is 535 

driven less by disasters per se and more by their communication. In this respect, one may notice increasing trends both on 

reporting disasters to the general public and on production of research articles on disasters. Such articles typically focus on 

particular areas recently hit by disasters. California is a popular example, but not the only one. Evidently, if we choose at 

random, say, 12 000 sites on earth, then every month we will have, on the average, one catastrophic event of a  thousand year 

return period in one of the sites. The roots of intensification of disaster reporting belong to the domains of psychology (cf. 540 

the notion of availability bias) and sociology rather than of hydrology. Thus, Blöschl and Montanari (2010) note: 

There may also be a sociological element to the interpretation of flood trends which we term as the hydrologist’s 

paradox: A recent large flood in a catchment will often lead to funding a study on the flood history of that catchment 

which will find there was a large flood at the end of the record. Simultaneously analysing many catchments in a large 

region will help reduce the chances of these self-fulfilling prophesies. 545 

This social behaviour of targeting research to recent disasters, which however lose societal focus after some time, has been 

also known the hydro-illogical cycle, a term attributed to Vit Klemes (Kundzewicz et al., 1993) but perhaps used earlier by 

others (Anderson et al., 1977). 

As a result of intensification of disaster reporting, people think that rainfall events have become more intense or 

frequent recently. However, based on a list of world record point precipitation measurements compiled by Koutsoyiannis and 550 

Papalexiou (2017) for various time scales ranging from 1 min to 2 years, the fact is that the highest frequency of record 

rainfall events occurred in the period 1960-80; later the frequency was decreased remarkably.  

A more detailed analysis can be based on the four sources of daily rainfall information analysed here. This analysis 

has been performed separately for each continent and its results are presented graphically. Figure 17 shows the temporal 

evolution of the monthly maximum daily precipitation areally averaged over the continents. Figure 18 shows similar 555 

information but for the areally maximum, over each continent, monthly maximum daily precipitation. None of the figures in 

none of the continents and none of the sources of data provides support on the intensification allegation. In particular, the 

observational data (CPC and GPCP) could support the opposite hypothesis, that of extreme rainfall deintensification. This 

becomes even more evident if we examine the temporal evolution of standard deviation of daily precipitation in each month, 

averaged over land. In this respect, Figure 19, shows that deintensification, expressed as decreasing standard deviation, is 560 

evident in the 21
st
 century both from CPC and GPCP observational data. The same is shown in a different manner in Figure 

20 in terms of precipitation rate exceeding a threshold. Clearly, neither the frequency of high precipitation nor the sum of 

high intensity precipitation is intensifying. Rather, in most of the cases, there has been deintensification in the 21st century. 

Again, however, it will be more prudent to speak about fluctuations rather deintensification. This confirms that stationary 

models (but with appropriate dependence structure; see section 8) should also be used for extremes, as also pointed out by 565 

De Luca et al. (2020).  
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Even if there were intensification on climatic basis in percentages like 1% or 5% mentioned above, casting 

catastrophic prophesies about the future, would be a misleading and irresponsible approach. The real data on impacts of 

disasters of climatic type suggest spectacular drop in the severest of them since the beginning of the 20
th

 century. Figure 21 

summarizes relevant information for victims of natural disasters (from sources of data seen Table 1, entry 23). The climate 570 

related victims (particularly those from floods and droughts) have been diminished, while other types of disasters such as 

earthquakes still cause large numbers of victims. Obviously, the reason behind such diminishing is not that floods and 

droughts have become less severe or less frequent. Rather it is the fact that in the 20
th

 century, instead of casting pessimistic 

prophesies about the future, the societies improved hydrotechnology, water management, and risk assessment and reduction, 

while strengthening the international collaboration and the economy, so that the advances could be actually implemented. 575 

7 Model predictions vs. data 

While most of climate impact studies have been based on the assumption that climate models provide plausible predictions 

(usually termed projections) of future hydroclimate, there is a number of studies that claimed that this cannot be true as, 

when compared with real data of the recent past (after the predictions were cast) or even earlier data (already known at the 

time of casting the prediction) prove to be irrelevant with reality (Koutsoyiannis et al., 2008, 2011; Anagnostopoulos et al., 580 

2010). This becomes even worse if we focus on extremes (Tsaknias et al., 2016). Tyralis and Koutsoyiannis (2017) 

developed a theoretically consistent (Bayesian) methodology to incorporate climate model information within a stochastic 

framework to improve predictions. However, because of the bad performance of climate models, application of this 

methodology leads to increased uncertainty or, in the best case, in results that are indifferent with respect to the case were the 

climate model information is not used at all. In summary, as implied by Kundzewicz and Stakhiv (2010), climate models 585 

may be less “ready for prime time” and more ready for “further research”.  

 To test if this is also the case on a global setting, here we use climate model outputs for monthly precipitation 

simulations for scenario runs for the period 1860-2100, from the Coupled Model Intercomparison Project (CMIP5), a 

standard experimental protocol for studying the output of coupled atmosphere-ocean general circulation models (AOGCMs). 

CMIP5 includes the models for the IPCC Fifth Assessment Report (https://esgf-node.llnl.gov/projects/cmip5/). The scenario 590 

used is the already mentioned “RCP8.5” (frequently referred to as “business as usual”, even though there is a lot of 

controversy about this, e.g. Burgess et al., 2020). The model outputs have again been accessed through the climexp platform 

(option Monthly CMIP5 scenario runs).  

Comparison of model outputs with reality, as the latter is quantified by the satellite (GCPC) observations, is provided 

in Figure 22. As expected by the assumptions and speculations mentioned in section 3, climate models predict increase of 595 

precipitation after 1990-2000. This hypothetical increase is visible in Figure 22. However, real-world data do not confirm the 

increase. Noticeable is also the large departure of reality and model outputs in terms of the average global precipitation. All 

these support the claim that climate models dissent from the hydrological reality. 
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8 Hurst-Kolmogorov dynamics 

The failure of climate models to describe reality does not imply that in reality there is no change. On the contrary, all data 600 

sets examined suggest change, but the simplistic assumption that there is virtually a single cause (i.e. CO2 concentration 

increase) that produces change does not work. More generally, history shows that that attempts to foretell the unknown 

future within a deterministic paradigm, resulted in spectacular failures. Therefore, real-world hydrological practice has 

traditionally been based on stochastics, which reflects a different paradigm in both understanding and modelling natural 

processes (Koutsoyiannis et al., 2009). 605 

Assuming that a real-world process 𝑥𝜏 is modelled as a stochastic process 𝑥𝜏, where τ denotes discrete time, we can 

monitor the changes at multiple time scales κ through the time-averaged process: 

𝑥𝜏
(𝜅)

=
1

𝜅
∑ 𝑥𝑖

𝜅𝜏

𝑖=(𝜏−1)𝜅+1

 (20) 

For small κ (e.g. daily scale) we usually call 𝑥𝜏
(𝜅)

 weather and for large κ (e.g. corresponding to 10, 30 or more years) we call 

it climate. We may notice that there is no qualitative difference between weather and climate. Both are varying in time, and 

the variation is quantified by the variance γ(κ), as a function of time scale κ, a function termed the climacogram 610 

(Koutsoyiannis, 2010). For sufficiently large κ (theoretically as κ → ∞), we may approximate the climacogram as: 

𝛾(𝜅) ∝  𝜅2𝐻−2 (21) 

where H is termed the Hurst parameter. The theoretical validity of such (power-type) behaviour of a process was implied by 

Kolmogorov (1940). The quantity 2H – 2 is visualized as the slope of the double logarithmic plot of the climacogram for 

large time scales. In a random process, H = 1/2, while in most natural processes 1/2 ≤ H ≤ 1, as first observed by Hurst 

(1951). This natural behaviour is known as (long-term) persistence or Hurst-Komogorov (HK) dynamics. A high value of H 615 

(approaching 1) indicates enhanced change and enhanced uncertainty (e.g. in future predictions). Additional information on 

the relationship of Hurst-Kolmogorov dynamics with change can be found in Koutsoyiannis (2013) while the applicability of 

the law (21) to time scales as long as several million years can be seen in Markonis and Koutsoyiannis (2013). 

 Now, Figure 23 shows the climacograms of the different types of processes examined in this study and the different 

sources of information. It is evident that all processes are consistent with the HK dynamics. Seasonality has also a significant 620 

effect in some (but not all) of the processes. In most of the processes H is very high, 0.9 or even higher. An exception is 

GPCP precipitation time series which suggests H = 0.64. However, the NCEP-NCAR precipitation suggests much higher 

variability at all time scales and H close to 0.90.  

High H values imply high climatic variability: assuming that the discrete time scale κ represents years, and that the 

law (21) is a good approximation for the annual and multiyear scales (an assumption verified in Figure 23), we can conclude 625 

that the climatic variability at scale κ, expressed through the coefficient of variation, is:  
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√𝛾(𝜅)

𝜇
=  

√𝛾(1)

𝜇
𝜅𝐻−1 (22) 

For κ = 30 and H = 0.9, this implies a 30-year climatic variation equal to 71% of the annual variation, while this would be 

18% if the process were random (if H were 0.5). Additional information on the consequences of the HK behaviour in 

changing our perception and modelling of climate can be found in Koutsoyiannis and Montanari (2007) and Koutsoyiannis 

(2011). 630 

9 Discussion and conclusions 

Arguably, climate has been changing for the entire 4.5 billion-year earth’s history. A changing climate can hardly been 

described by a mean value; variability is also needed to be specified. For this specification we certainly need a measure of 

variation, which could be one of the standard measures (variance, standard deviation, coefficient of variation). But we also 

need to define how this variability decreases as the time scale increases. A parsimonious way to do the latter task is through 635 

the Hurst parameter, which, based on the data sets used, turns out to be very high, implying that the difference between 

weather and climate is not as dramatic as in common perception. In this respect, even if the established climatic hypotheses 

of an intensifying hydrological cycle with rates of the order of 1% (never reaching that of 10%) were validated, 

hydroclimatic concerns would not be justified. In older times such rates of change would not be discussed at all; for the 

logical framework about precision was already formed in ancient times (see the motto in the beginning of the article).  640 

 In fact, the established climatic hypotheses on hydrological cycle are not validated by the data analysed. Relative 

humidity is decreasing in the entire atmosphere, instead of being constant. Specific humidity is increasing at a rate of about 

1/3 of that implied by established hypotheses. Water vapour amount is fluctuating without a monotonic trend. Precipitation 

and evaporation again fluctuate. The precipitation extremes and their frequencies also fluctuate. Fluctuations are successions 

of intensification and deintensification, with deintensification prevailing in the 21st century.  645 

The water balance on land and sea appears to be lower than the standard figures of literature, but with greater 

variability on climatic time scales, which is in accordance to Hurst-Kolmogorov stochastic dynamics. The uncertainty in 

figuring out the global water balance is still high, despite the recent big data amounts. The sources of uncertainty are many 

and, as analysed in the study, need substantial additional efforts to quantify.   

The most obvious anthropogenic signal in the hydrological cycle is the overexploitation of groundwater, which has a 650 

visible effect on sea level rise. Melting of glaciers has an equal effect, but it this case it is not known what part is 

anthropogenic as studies for polar regions attribute mass loss mostly to ice dynamics. 

 The above results strengthen an earlier (Koutsoyiannis et al., 2009) envisagement of hydrological community’s role, 

Instead of a pathetic role in assessing hydrological impacts based on climate model outputs, an energetic role consistent with 

its history is possible. Indeed, hydrology has much more to offer to societies than prophesies of future catastrophes. During 655 
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the 20th century, and particularly after the Second World War, hydrology, by supporting hydrotechnology, water 

management, and risk assessment and reduction, within a strong international collaboration and a strong economy, has 

substantially contributed to life as a value, as well as to the quality and length of life. 
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Figures 

 

Figure 1: Variation of the global average temperature (left) at the level of 2 m above ground and (right) at the lower troposphere. 

Thin and thick lines of the same colour represent monthly values and running annual averages (right aligned). Sources of data are 

indicated in the legend and detailed in Table 1. In the right panel, the reanalyses (NCEP-NCAR and ERA5) time series are 860 
weighted averages of those at the levels of 500 and 700 hPa with weights 0.62 and 0.38, respectively, which were found for optimal 

fitting with the satellite (UAH) series.  

 

Figure 2: (Left) Variation of the average temperature and dew point at the level of 2 m above ground, globally (earth) and at land 

and sea parts. Thin and thick lines of the same colour represent monthly values and running annual averages (right aligned). 865 
(Right) Zonal distribution of earth temperature and dew point; for the temperate zone (±23.5° to ±66.5°) the fitted slopes are also 

plotted, which are ±0.68 °C/° and ±0.56 °C/°, respectively. Sources of data: ERA5 reanalysis as detailed in Table 1; for comparison 

and validation, in the left graph the MODIS-terra land-surface temperature (averages of daytime and nighttime datasets, available 

since 2000) is also plotted in black. 
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 870 

Figure 3: Zonal distribution of the difference of the earth temperature and dew point from their averages in the period 1980-99. 

Source of data: ERA5 reanalysis as detailed in Table 1. The data for the plot were constructed via climexp, by first computing 

“anomalies” for the period 1980-99, then by computing zonal mean and finally by applying the option “Compute mean, s.d., or 

extremes” and specifying “averaging over 12 months”. Note that the graph represents averages for the entire 40+ year period, 

rather than differences between two periods (the latter are about twice the former). 875 

 

Figure 4: Variation of the saturation water pressure e(T) and e(Td) for the average temperature T and dew point Td as shown in 

Figure 2. Thin and thick lines of the same colour represent monthly values and running annual averages (right aligned). Sources of 

data: ERA5 reanalysis as detailed in Table 1. 
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 880 

Figure 5: Variation of specific humidity at the levels of (left column) 850 hPa and (right column) 300 hPa. Thin and thick lines of 

the same colour represent monthly values and running annual averages (right aligned). Sources of data are indicated in the legend 

and detailed in Table 1. 
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Figure 6: Vertical profile of the difference between two climatic periods of average water vapour water pressure e(T) and e(Td) = 885 
U e(T) over land at levels of atmospheric pressure ranging from 1000 to 300 hPa. Sources of data: NCEP-NCAR and ERA5 

reanalyses as detailed in Table 1 (entries 3, 4, 6, 7). For the NCEP-NCAR data, the differences are of the 30-year climatic periods 

1948-77 and 1990-2019 and for the ERA5 data of the 20-year climatic periods 1980-99 and 2000-19.  
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Figure 7: Variation of water vapour amount. Thin and thick lines of the same colour represent monthly values and running 890 
annual averages (right aligned). Sources of data are indicated in the legend and detailed in Table 1. The plotted values for MODIS 

represent the averages from Terra and Aqua platforms. 
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Figure 8: Variation of water vapour amount as in Figure 7 but only for the MODIS data set and separately for the Terra and 

Aqua platforms: (left) total of the vertical column; (middle) from surface to 680 hPa; (right) from 440 to 10 hPa. Thin and thick 895 
lines of the same colour represent monthly values and running annual averages (right aligned). Sources of data are indicated in the 

legend and detailed in Table 1.  

 

Figure 9: Variation of cloud water amount (in ice and liquid phase). Thin and thick lines of the same colour represent monthly 

values and running annual averages (right aligned). Sources of data are indicated in the legend and detailed in Table 1.  900 
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Figure 10: Variation of (left column) precipitation and (right column) evaporation. Thin and thick lines of the same colour 

represent monthly values and running annual averages (right aligned). Sources of data are indicated in the legend and detailed in 

Table 1; GPCP is version V2.3. 
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Figure 11: (Left) Variation of the snow cover extent in the northern hemisphere according to GSL; thin and thick lines represent 

monthly values and running annual averages (right aligned), and squares are annual averages aligned at December of each year. 

(Right) Seasonal variation of the snow cover, separately for the first and last 25 years of record.  

 

Figure 12: Global water balance derived from the difference of precipitation and evaporation at land and sea from (left) the 910 
NCEP-NCAR and (right) the ERA5 reanalyses. Thin and thick lines of the same colour represent monthly values and running 

annual averages (right aligned). 
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Figure 13: Typical depiction of water on Earth (source: USGS; https://www.usgs.gov/special-topic/water-science-

school/science/oceans-and-seas-and-water-cycle and Wikipedia: https://en.wikipedia.org/wiki/Water_distribution_on_Earth 915 
#/media/File:Earth's_water_distribution.svg) with caution stamp added to discourage considering freshwater as non-renewable 

reserve. 

 

Figure 14: Hydrological cycle and proposed quantification of water balance.  
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Figure 15: (Left) Final global water balance at land and sea from the NCEP-NCAR reanalysis. Thin and thick lines of the same 

colour represent monthly values (but with rates expressed in km3/year) and running annual averages (right aligned). (Right) 

Average seasonal variation of water balance. 

 

Figure 16: Comparison of results of the current study for surface runoff with those of (left) Dai (2016, Figure 2.8 digitized), 925 
Schellekens et al. (2017, Figure 7 digitized, ensemble mean) and Ghiggi et al. (2019, Figure 8a digitized, ensemble mean) at the 

annual scale, and (right) Syed et al. (2009, Figure 7 digitized) at monthly scale (but with rates expressed in km3/year). Dashed lines 

in the left panel are 95% confidence limits of the 30-year climatic average of the current study.  

0

10000

20000

30000

40000

50000

60000

1940 1950 1960 1970 1980 1990 2000 2010 2020

M
o

n
th

ly
 w

at
er

 b
al

an
ce

 (
km

3 /
ye

ar
) From land From sea

15000

20000

25000

30000

35000

40000

45000

JA
N

FE
B

M
A

R

A
P

R

M
A

Y

JU
N

JU
L

A
U

G

SE
P

O
C

T

N
O

V

D
EC

M
ea

n
 m

o
n

th
ly

 w
at

er
 b

al
an

ce
 (

km
3 /

ye
ar

)

0

10000

20000

30000

40000

50000

60000

1940 1960 1980 2000 2020

R
u

n
o

ff
, k

m
3 /

ye
ar

Current study

Dai (2016)

Schellekens et al. (2017)

Ghiggi et al. (2019)
0

10000

20000

30000

40000

50000

60000

2003 2004 2005 2006

W
at

er
 b

al
an

ce
, k

m
3 /

ye
ar

Current study, from land
Syed et al. (2009), from land
Current study, from sea
Syed et al. (2009), from sea

https://doi.org/10.5194/hess-2020-120
Preprint. Discussion started: 20 March 2020
c© Author(s) 2020. CC BY 4.0 License.



40 

 

 

Figure 17: Variation of the monthly maximum daily precipitation areally averaged over the continents. Thin and thick lines of the 930 
same colour represent monthly values and running annual averages (right aligned). Dashed lines are for reanalyses and 

continuous lines for observations. Sources of data are indicated in the legend and detailed in Table 1. 
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Figure 18: Variation of the areally maximum, over each continent, monthly maximum daily precipitation. Thin and thick lines of 

the same colour represent monthly values and running annual averages (right aligned). Dashed lines are for reanalyses and 935 
continuous lines for observations. Sources of data are indicated in the legend and detailed in Table 1. Notice that the satellite 

(GPCP) data do not seem to capture precipitation rates higher than 100 mm/d. 
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Figure 19: Variation of the standard deviation of daily precipitation in each month, areally averaged. Thin and thick lines of the 

same colour represent monthly values and running annual averages (right aligned). Sources of data are indicated in the legend and 940 
detailed in Table 1. 
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Figure 20: (Left column) Average days per month with precipitation exceeding a threshold value, which is 10 mm/d for the upper 

row and 20 mm/d for the lower row; (right column) monthly total of daily precipitation exceeding the threshold value. Thin and 

thick lines of the same colour represent monthly values and running annual averages (right aligned). Sources of data are indicated 945 
in the legend and detailed in Table 1. 
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Figure 21: Annual global number of deaths from natural catastrophes per million of population and per decade. “Extreme 

weather” includes storm, extreme temperature (cold or heat wave, severe winter conditions) and fog; “Earthquake” also includes 

tsunami; “Other” comprises landslides (wet or dry), rock fall, volcanic activity (ash fall, lahar, pyroclastic flow, lava flow) and 950 
wildfire. For the sources of data see Table 1, entry 23. 

 

Figure 22: Comparison of climate model outputs (for specification of which see text) with reality, as quantified by GPCP satellite 

observations. “Multimodel” refers to CMIP5 scenario runs, entries: CMIP5 mean – rcp85. “Single model” refers to CCSM4 – 

rcp85, ensemble member 0, where CCSM4 stands for Community Climate System Model version 4, released by NCAR. 955 
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Figure 23: Climacograms of the indicated processes calculated from monthly time series; for some series with prominent 

seasonality the climacograms from annual time series are also plotted with thicker lines of same colour. For time scales larger than 

annually all slopes in the double logarithmic plots are close to –0.2, suggesting a Hurst parameter 0.90 (or larger if bias is taken 

into account). Exceptions are the NH snow cover extent with a slope of –0.47, suggesting a Hurst parameter 0.76 and the GPCP 960 
precipitation series with a slope of –0.72, suggesting a Hurst parameter 0.64.  
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Tables 

Table 1: List and details of variables and data sets used in the study 

# Variable, notation, unit, 

source acronym 

Time scale, data type, 

time span 

Description and original source Additional sites for data access 

and processing 

1 Temperature, T (°C) 

[UAH] 

monthly, observations, 

1978-2019 

UAH temperature for the lower troposphere (global 

average) from satellite data, 

(http://www.nsstc.uah.edu/data/msu/v6.0/tlt/uahncd

c_lt_6.0.txt)*  

climexp 

(http://climexp.knmi.nl/), 

section: monthly observations 

2 Temperature, T (°C)) 

[MODIS] 

monthly, observations, 

Terra: 2000-2019 

Aqua: 2002-2019 

MODIS-Terra & MODIS-Aqua satellites 

(https://giovanni.gsfc.nasa.gov/giovanni/); 

observations from the Terra platform (MOD11C3 

v006) are used  

 

3 Temperature, T (°C) 

[NCEP-NCAR] 

daily & monthly, 

reanalysis, 1948-2019 

NCEP-NCAR reanalysis 

(https://www.esrl.noaa.gov/psd/cgi-

bin/data/testdap/timeseries.pl); resolution 1.88°; 

levels used for study: 2 m, 1000, 925, 850, 700, 

600, 500, 400, 300 hPa 

climexp, sections daily fields & 

monthly reanalysis fields 

4 Temperature, T (°C) 

[ERA5] 

daily & monthly, 

reanalysis, 1979-2019  

ERA5 reanalysis by ECMWF 

(http://www.ecmwf.int/en/research/climate-

reanalysis); resolution 0.5°; levels used for study: 2 

m, 1000, 925, 850, 700, 600, 500, 400, 300 hPa 

climexp, sections daily fields & 

monthly reanalysis fields 

5 Dew point, Td (°C) 

[ERA5] 

daily, reanalysis, 1979-

2019 

As in 4 but only for the surface level  climexp, section daily fields† 

6 Relative humidity, U (-) 

[NCEP-NCAR] 

monthly, reanalysis, 

1948-2019 

As in 3  

7 Relative humidity, U (-) 

[ERA5] 

monthly, reanalysis, 

1979-2019 

As in 4  

8 Specific humidity, q 

(g/kg) [NCEP-NCAR] 

monthly, reanalysis, 

1948-2019 

As in 3; used levels for study: 850 hPa, 300 hPa As in 3  

9 Specific humidity, q 

(g/kg) [ERA5] 

monthly, reanalysis, 

1979-2019 

As in 4; used levels for study: 850 hPa, 300 hPa As in 4 

10 Water vapour amount, 

W (mm) [NVAP] 

monthly, observations, 

1988-2009 

NVAP, from the NASA Pathfinder project 

(http://nvap.stcnet.com/, section sample results, last 

figure) 

Vonder Haar et al. (2012) 

(Figure 4c, after digitization)  

11 Water vapour amount, 

W (mm) [MODIS] 

monthly, observations, 

Terra: 2000-2019 

Aqua: 2002-2019 

MODIS-Terra & MODIS-Aqua satellites 

(https://giovanni.gsfc.nasa.gov/giovanni/); 

observations from both Terra (MOD08_M3) and 

Aqua (MYD08_M3) platforms are used 

 

12 Water vapour amount, 

W (mm) [NCEP-NCAR] 

monthly, reanalysis, 

1948-2019 

As in 3  As in 3  

13 Water vapour amount, 

W (mm) [ERA5] 

monthly, reanalysis, 

1979-2019 

As in 4 As in 4 

https://doi.org/10.5194/hess-2020-120
Preprint. Discussion started: 20 March 2020
c© Author(s) 2020. CC BY 4.0 License.



47 

 

# Variable, notation, unit, 

source acronym 

Time scale, data type, 

time span 

Description and original source Additional sites for data access 

and processing 

14 Cloud water amount, 

WCI, WCL (mm) 

[MODIS] 

monthly, observations, 

Terra: 2000-2019 

Aqua: 2002-2019 

As is 10  

15 Precipitation, P (mm/d) 

[CPC] 

daily & monthly, 

observations, 1979-

2019 

CPC unified gauge-based daily precipitation 

gridded over land 

(https://www.cpc.ncep.noaa.gov/products/Global_

Monsoons/gl_obs.shtml; 

https://climatedataguide.ucar.edu/climate-data/cpc-

unified-gauge-based-analysis-global-daily-

precipitation); resolution 0.5° 

climexp, section daily fields 

(the first version, referring to 

the entire land grid —not only 

to grid boxes with observations) 

16 Precipitation, P (mm/d) 

[GPCP] 

daily & monthly, 

observations,  

daily (V1.3) 1996-

2019; 

monthly: 1979-2019 

GPCP precipitation data set combining gauge and 

satellite precipitation data over a global grid 

(https://www.ncdc.noaa.gov/cdr/atmospheric/precip

itation-gpcp-daily – resolution 1°; 

https://www.ncdc.noaa.gov/cdr/atmospheric/precipit

ation-gpcp-monthly – resolution 2.5°). 

climexp (both daily and 

monthly); NOAA-PSD 

(https://www.esrl.noaa.gov/psd/

cgi-

bin/data/testdap/timeseries.pl; 

monthly only) 

17 Precipitation, P (mm/d) 

[NCEP-NCAR] 

daily & monthly, 

reanalysis, 1948-2019 

As in 3 As in 3  

18 Precipitation, P (mm/d) 

[ERA5] 

daily & monthly, 

reanalysis, 1979-2019  

As in 3 As in 4 

 

19 Snow cover extent S 

(km2) [GSL] 

monthly, observations 

for the Northern 

Hemisphere, 1967-

2019  

Snow cover by the Global Snow Laboratory (GSL) 

(https://climate.rutgers.edu/snowcover/table_area.ph

p?ui_set=1&ui_sort=0); resolution: 88 × 88 grid 

points 

NOAA's National Centers for 

Environmental Information 

(https://www.ncdc.noaa.gov/sno

w-and-ice/extent/snow-

cover/nhland/0) 

20 Evaporation, E (mm/d) 

[NCEP-NCAR] 

monthly, reanalysis, 

1948-2019 

As in 3  As in 3  

21 Evaporation, E (mm/d) 

[ERA5] 

monthly, reanalysis, 

1979-2019  

As in 4 As in 4 

 

22 Population (-) annual, measurements, 

1900-2019 

United States Census (https://www.census.gov/data-

tools/demo/idb/informationGateway.php)  

Our World in Data 

(https://ourworldindata.org/worl

d-population-growth)  

23 Disasters (number of 

victims per disaster 

type) (-) 

annual, measurements, 

1900-2019 

The OFDA/CRED International Disaster Database 

(https://www.emdat.be) 

Our World in Data 

(https://ourworldindata.org/ofda

cred-international-disaster-data) 

* The data set is given as “anomalies”, which to convert to actual temperatures we used the monthly averages from 

http://www.drroyspencer.com/2016/03/uah-v6-lt-global-temperatures-with-annual-cycle/. 965 

† For the NCEP-NCAR daily and monthly reanalysis neither the dew point nor the relative humidity at the surface level are available.  
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Table 2: Average air temperature (T) and dew point (Td) in °C per 20-year and 10-year climatic periods, and resulting differences. 

Data from ERA5 reanalysis except for lower troposphere which is from UAH. 

Variable and domain First 20 

years 

Last 20 

years 

Difference in 

20 years (and 

per decade) 

First 10 

years 

Last 10 

years 

Difference in 

30 years (and 

per decade) 

Offset 

distance 

(km/decade)
*
 

T, earth 14.09 14.46 0.38 (0.19) 14.02 14.58 0.56 (0.19) 31 

T, land 8.70 9.32 0.61 (0.31) 8.59 9.47 0.88 (0.29)  

T, sea 16.21 16.49 0.28 (0.14) 16.16 16.59 0.42 (0.14)  

T, lower troposphere –9.27 –9.02 0.25 (0.12) –9.34 –8.94 0.39 (0.13) 21 

Td, earth 9.17 9.38 0.21 (0.11) 9.13 9.47 0.34 (0.11) 21 

Td, land 0.86 1.14 0.28 (0.14) 0.75 1.22 0.47 (0.16)  

Td, sea 12.48 12.66 0.18 (0.09) 12.46 12.76 0.29 (0.10)  

*
 The distance, which moving poleward in the temperate zone, would offset, on the average, the decadal increase of 

temperature or dew point. 970 

Table 3: Average saturation vapour pressures, e(T) and e(Td), in hPa per 20-year climatic periods and resulting differences. Data 

from ERA5 reanalysis. 

 First 20 years
*
 Last 20 years

*
 Difference % difference 

e(T), earth 16.14 16.54 0.40 2.4 

e(T), land 11.66 12.15 0.49 4.2 

e(T), sea 18.45 18.77 0.33 1.8 

e(Td), earth 11.66 11.82 0.17 1.4 

𝑒(𝑇d), land 6.70 6.83 0.13 2.0 

𝑒(𝑇d), sea 14.48 14.66 0.18 1.2 

*
 
The values of e(T) and e(Td) were estimated for each time step (month) and then averaged over the indicated period.. 
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Table 4: Specific humidity at 850 hPa (q850) and at 300 hPa (q300) in g/kg per 30-year climatic periods, and resulting differences. 

Data from NCEP-NCAR reanalysis. 975 

 First 30 years Last 30 years Difference % difference 

q850, earth 6.13 6.14 0.02 0.4 

q850, land 5.47 5.43 –0.04 –8.1 

q850, sea 6.56 6.63 0.07 1.0 

q300, earth 0.271 0.255 –0.016 –6.0 

q300, land 0.232 0.204 –0.027 –12.5 

q300, sea 0.287 0.276 –0.011 –3.9 

 

Table 5: Water vapour amount (W) in mm per 30-year climatic periods, and resulting differences. Data from NCEP-NCAR 

reanalysis. 

 First 30 years Last 30 years Difference % difference 

W, earth 25.15 25.11 –0.03 –0.1 

W, land 18.04 17.66 –0.28 –1.5 

W, sea 29.86 29.99 0.13 0.4 

 

Table 6: Sensitivity analysis of water balance calculations. 980 

Assumption for calculation Resulting runoff, 

R (km
3
/year) 

Adjustment of sea evaporation only  30 800 

Proportional adjustment in both land and sea 32 000 

Adjustment of land evaporation only  37 300 
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